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Several years ago Elliot Leader and I set about seeing if we could
understand how to write down a sum rule for transverse polarization
(transversity? More on this later) analogous to the very important helicity-
based sum rule that had such a dominating importance for the past couple
decades.
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We had in mind to follow Feynman’s well-marked path for parton model
sum-rules; sum-rules for charge, isospin, momentum, helicity:

• Take some operator whose nucleon matrix elements are known, at least in principle.
For example, momentum, charge, helicity.

• Calculate the operator’s parton —quark and gluon— matrix elements.

• Expand the nucleon state into a sum of Fock space states of quarks and gluons.

• Equate the nucleon matrix element to the sum of the Fock state matrix elements.

• Take the limit that the nucleon momentum goes to infinity.

• Voila! If all goes well you have the desired sum rule.

Many people worked on related problems and obtained some interesting
results, but not exactly what we were looking for. Some ran into difficulty
carrying through this scheme which works so well for longitudinal spin for
the transverse spin case.

2



The sort of problem encountered, and the one we focused on, can be
seen in the formula that was widely used for the matrix element of the
angular momentum operator between fermion —proton or quark—states.

〈Ji〉std =
1

4Mp0
{(3p2

0 − M2)si − (
3p0 + M

p0 + M
)(p · s)pi}

+iεijkpj
∂

∂pk
δ(3)(p′ − p ).

Jaffe & Manohar, NP B337, 509 (1990)

If s is parallel to p this becomes simply σi/2, which is good, exactly
what is needed for the much studied helicity sum rule, but if s · p=0, i.e. it
is transversely polarized, this gives 3p3/Msi as p3 → ∞ and so it cannot
be used in the manner planned to obtain a parton model sum rule.
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This may be an intrinsic problem with describing transverse spin, which
there are other indications for, but before reaching this strong negative
conclusion, it is prudent to check the derivation of this formula. There are
complications which make this formula difficult to derive; in particular, the
angular momentum operator is given by an integral of the energy-momentum
tensor:

Ji =

∫

d3x(xjT
0k − xkT

0j).

In order to get well-defined integrals here it is necessary to utilize wave-
packets for non-forward scattering, always a messy and tedious business. It
is especially so because of the factors xi in the integrand which will make
the convergence more problematic and in the end lead to derivatives of
δ-functions.
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Nevertheless with due care and diligence this can be carried through and
we obtain for “boost” states quantized with spin m along the z-axis,

〈p′,m′|Ji|p,m〉 = 2p0(2π)3
[

1

2
σi + iεijkpj

∂

∂pk

]

m′m

δ(3)(p′ − p ).

instead of the above, the very simple and intuitively compelling result
showing spin plus orbital angular momentum. For massless particles,
especially the gluon we need to use instead the helicity basis for which the
same procedure yields

〈p′, λ′|Ji|p,λ〉 = (2π)32p0 [ληi(p) + i(p × ∇p)i] δ
3(p′ − p)δλλ′.

where (θ,φ) are the polar angles of p and

ηx = cos(φ) tan(θ/2), ηy = sin(φ) tan(θ/2), ηz = 1.
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We have in mind a QCD energy-momentum tensor of the form

T 0k = 1
2Ψ̄γ0i

↔

Dk Ψ − 1
2Ψ̄γki

↔

D0 Ψ +
1

4
F 0aF k

a .

We will not be doing any dynamical calculations here with this; only the
form is important but in later applications it may be necessary to have this
equation.

We can use this for both the nucleon and the quarks within (if we
quantize in the “instant” form which is more suitable for discussing rotations
than the currently more popular “front” form.) Notice that the limit as
pz → ∞ of the quark-spin matrix elements are totally trivial; in the same
limit, the transverse spin matrix elements for gluons vanish, as they should.
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Elementary but general derivation

which is based on the purely kinematic role of rotations in the instant form. Consider a
rotation about axis-i through an angle β. The unitary operator which effects this is given
in terms of the angular momentum operator Ji:

Ri(β) = exp(−iβJi)

and for a particle of spin-12

Ri(β))|p, m〉 = |Ri(β)p, n〉D
1
2

nm(R(β)).

So

〈p′
, m

′|Ri(β)|p, m〉 = 〈p′
, m

′|Ri(β)p, n〉D
1
2

nm(Ri(β))

= 2p0(2π)3
δ

(3)(p′ − Ri(β)p)D
1
2

m′m
(Ri(β)),
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and

〈p′
, m

′|Ji|p, m〉 = i
∂

∂β
〈p′

, m
′|(Ri(β)|p, m〉|β=0

= 2p0(2π)3
„

iεijkpj

∂

∂pk

δm′m +

i
∂

∂β
D s

m′m(Ri(β))
˛

˛

˛

β=0

«

δ
(3)(p′

− p ).

Now

i
∂

∂β
D

1
2

m′m
(Ri(β))

˛

˛

˛

β=0
= 1

2(σi)m′m

Thus, our final result for the matrix elements of the angular momentum becomes

〈p′
, m

′|Ji|p, m〉 = 2p0(2π)3
»

1
2σi + iεijkpj

∂

∂pk

–

m′m

δ
(3)(p′

− p ). (1)
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We next use the Fock-space momentum wave functions to calculate the
density matrices for quarks, anti-quarks and gluons: for the quarks and
anti-quarks we use the canonical z-axis quantization for spin, for gluons the
helicity basis and then equate the proton matrix element of Ji for any i to
the corresponding parton contribution:

1
2(σi)m′ m =

∫

d3k
[

1
2(σi)σ′ σ ρm′ m

σ′ σ (k, k)q+q̄ + λ ηi(k) ρm′ m
λ λ (k,k)G

]

+〈Li〉q+q̄
m′ m

+ 〈Li〉Gm′ m

In order to calculate the orbital pieces we need to know the momentum
dependence of ρ; we did not address this important question.
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Note that the density matrix elements are not invariant under Lorentz
transformation so although the equation has the same form in any frame,
the values depend on the frame. This is standard parton model lore and to
make contact with other calculations we must go to the infinite-momentum
frame by way of an infinite boost along the z-axis. For Jz we just reproduce
the classic sum-rule. The quark a spin contribution to the RHS (an identical
expression holds for the antiquarks) is

1
2

∫

d3k1
2

[

ρ+ +
+ + − ρ−−

+ + − ρ+ +
−− + ρ−−

−−

]a

just the difference between the density matrices for quark spin parallel or
anti-parallel to the proton spin. Because ηz = 1 the gluon enters in exactly
the same way and they just add, along with the anti-quarks, to complete
the sum-rule.
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For transverse spin we follow the same path. For fermions we write, say
for spin in the x-direction

|p, ↑〉 =
1√
2
{|p,m = 1/2〉 + |p, m = −1/2〉},

|p, ↓〉 =
1√
2
{|p,m = 1/2〉 − |p,m = −1/2〉}.

For the proton, we assume the spin is in the x-direction and we take its
matrix element of Jx so again get 1/2 on left-hand side.
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The quark spin matrix element are all off-diagonal in m and take the
value 1 so we get for transverse spin from the quarks

1
2

∫

d3k1
2

[

ρ+−
+− + ρ+−

−+ + ρ−+
−+ + ρ−+

+−

]a

This can be straightforwardly rearranged to give for transversity states

1
2

∫

d3k1
2

[

ρ↑ ↑
↑ ↑ − ρ↓ ↓

↑ ↑ − ρ↑ ↑
↓ ↓ + ρ↓ ↓

↓ ↓

]a

so once again it is parallel minus anti-parallel. It is interesting that this form
is formally independent of the frame. Not so for the gluon: rather we get
parallel minus antiparallel multiplied by ηx = cos(φ) tan(θ/2). For finite kT

we have θ → 0 as pz → ∞ and so the gluon spin contribution vanishes in
the parton model limit.
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This can be written in a form familiar from the helicity sum rule by
writing

1
2

∫

d3k1
2

[

ρ↑ ↑
↑ ↑ − ρ↓ ↓

↑ ↑ − ρ↑ ↑
↓ ↓ + ρ↓ ↓

↓ ↓

]a

= 1
2

∫

dx(q↑↑↑↑(x) − q↑↑↓↓(x))a

≡ 1
2∆T qa

so our sum rule is

1
2 = 1

2Σa(∆Tqa + ∆T qā) + 〈Lx〉a+ā + 〈Lx〉G

This is different from the sum-rule of Jaffe and Ji (PRL 67, 552, (1991)) which
they call the transversity sum-rule

δq = Σa(∆Tqa − ∆T qā) + 〈Lx〉a−ā
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They call δq the tensor charge; some people call it gT which confuses it
with another quantity denoted the same way. It evidently has no sea quark
or gluon contribution.

To be more precise, Jaffe & Ji’s result has the quark spin be given as the
quark light-cone helicity. This is obtained by a rotation through the famous
Melosh angle from our fixed z quantization direction: For large energy and
limited transverse momentum, this correction which has

d2kTρ(k) → d2kT cos(ΘM)

is very small. For a similar effect, see Ma and Schmidt, Phys Rev D 58, 096008.
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Unlike the wonderful helicity sum-rule, neither of these two lead directly
to methods for measuring ∆Tqa. You can imagine ways in Drell-Yan and
semi-inclusive DIS, but I have not attempted to do that. Likewise, the
orbital angular momentum remains a challenge for both of them. Perhaps
they can be used together to make progress?

Transversity:

Just a few comments to help clarify the term: The name has been around
since at least the early 1960’s when it was introduced as a parallel quantity
to helicity: spin quantized normal to momentum. (A. Kotanski, Acta Phys.

Pol., 30: 629-45(Oct. 1966), Cohen-Tannoudji et al, Nuovo Cim. (10), 50A: 1025-8(Aug.

21, 1967).) This is especially useful for 2 → 2 reactions where all particles
can share the normal as the quantization axis. Transversity amplitudes have
been used intermittently since that time. More recently, in a paper cited
by Jaffe and Ji, Goldstein and Moravcsik (PR D 32,303 (1985))used them for
describing the polarization in high energy pp scattering.
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J&J were searching for a term to avoid confusion of notation that was
plaguing the transverse spin business, so they took the term “transversity”
to mean specifically the structure function which enters their sum-rule.
Unfortunately Leader and I are so old that we continue to use the original,
broader definition of transversity so confusion continues:

email from Ji to Leader:

Dear Elliot, I was asked occasionally about the role of the trasverstity distribution
in the angular momentum sum rule. My answer has been “none” because transversity
operator is not part of the angular momentum operator and therefore a spin sum rule
cannot naturally involve transversity. This is a general observation . . . . [In fact,
angular momentum operator is chirally-even, and transversity operator is chirally odd.]
I would be happpy to hear your argument against this if you don;t agree.

Best regards, Xiangdong
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So whatever you want to call it, we have derived a simple, intuitive sum
rule for transverse polarized protons. Its derivation is essentially kinematic,
involving no dynamics, rather like the charge sum rule, but a little more
complicated.

It is distinct from the tensor charge sum rule which does involve the
Jaffe-Ji transversity distribution h1(x), but they contain related quantities
and so might be complementary.

Its usefulness depends on how well the various quantities that enter into
it can be determined ( cf. e.g.: Barone et al Phys Rep 359,1 (2002), Boer and Mulders,
Phys Rev D 57, 5780 (1998)); it is especially important to determine the Fock
space wave functions and orbital angular momentum part.(e.g. Hoodbhoy et
al Phys Rev D 59, 014013 (1998).
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